Problem 1

You may attempt parts a and b independently.

Part a

Consider the following function $h : \mathbb{N} \rightarrow \mathbb{N}$,

$$h(k) = \max\{q \in \mathbb{N} \mid \text{there exists a Turing machine } M \text{ and an input } w \text{ with } |\langle M, w \rangle| \leq k \text{ and } M \text{ halts on input } w \text{ in } q \text{ steps}\}.$$

Show that h grows too fast to be computable, in the sense that not only is h not computable, but neither is any function h' such that $h(k) \leq h'(k)$ for all natural numbers k.

Part b

Suppose h is a non-decreasing function that grows to be too fast to be computable (e.g., the function in the previous part). Define a strictly increasing function $f(k) = h(k) + k$. For $x \in \mathbb{N}$, let

$$g(x) = \sup\{k \mid f(k) \leq x\},$$

be the greatest natural number k such that $f(k)$ is not larger than x. Note that $g(f(k)) = k$.

Show that $g(k)$ grows too slowly to be computable, in the sense that not only is g not computable, but neither is any unbounded function g' such that $g'(k) \leq g(k)$ for all natural numbers k.

(A function f is unbounded if for any y, there is some x such that $f(x) > y$.)
Problem 2

Part a

Recall the acceptance problem for Turing machines,

\[A_{\text{TM}} = \{ \langle M, w \rangle | M \text{ accepts on input } w \} \].

Prove or disprove: \(A_{\text{TM}} \leq_{m} \overline{A_{\text{TM}}} \).

Part b

Suppose \(P = \text{NP} \). Characterize the set of NP-complete languages in this case.

Problem 3

We say that two graphs \(G \) and \(H \) with vertex set \(\{1, \ldots, n\} \) are isomorphic, if we can reorder the vertices of \(H \) such that \(G \) and \(H \) are the same graph.

Show that the following language is in NP:

\[\text{GRAPH ISOMORPHISM} = \{ \langle G, H \rangle | G \text{ and } H \text{ are isomorphic} \} \].

Problem 4

Consider the language of satisfiable Boolean formulas:

\[\text{sat} = \{ \varphi | \varphi \text{ is a satisfiable Boolean formula} \} \].

Suppose there exists a \(t \)-time algorithm to decide \(\text{sat} \) for some function \(t : \mathbb{N} \rightarrow \mathbb{N} \). Show that there exists a \(O(t^2) \)-time algorithm that given a satisfiable Boolean formula outputs a satisfying assignment for the formula.